SESSION 2: ELECTRONIC PROPERTIES AND DERIVED FUNCTIONS OF MOFS
Biomimetic Mineralization of MOFs
Graz University of Technology, Institute of Physical and Theoretical Chemistry, Austria
The University of Adelaide, Department of Chemistry, Australia
Keywords: self-assembly, mineralization, biomolecule, MOF composite, bio-MOF
Among the different classes of Metal-organic Framework (MOF) composites prepared during recent years using ceramic, metallic and polymeric nanoparticles,[1-4] a newe merging type of MOF composite has been recently obtained encapsulating bio-macromolecules within MOFs.[5-7] In physiological solutions,co-precipitation and biomimetic mineralization methods have been used to self-assemble MOFs around bio-active compounds (e.g., enzymes). The biomimetic mineralization of MOF bio-composites enables the fast encapsulation of guests larger than micropores of MOFs.[8] This new class of bio-composites have shown unprecedented properties for biotechnological applications.[9] In this presentation, we will discuss about different biomacromolecules (e.g., proteins, carbohydrates) and complex biological systems (yeast cells) as crystallization agents for MOFs.[10–13] The functional properties of these composites will be disclosed providing examples of other methods used for the encapsulation of proteins within MOFs, including the preparation of hollow MOF capsules.[14,15] Exciting potential applications of these new MOF bio-composites and current challenges will be presented.[8,16]
[1] P. Falcaro, R. Ricco, A. Yazdi, I. Imaz, S. Furukawa, D. Maspoch, R. Ameloot, J. D. Evans and C. J. Doonan, Coord. Chem. Rev. 307, 237–254, 2016
[2] Q.-L. Zhu and Q. Xu, Chem. Soc. Rev. 43, 5468–5512, 2014
[3] C. M. Doherty, D. Buso, A. J. Hill, S. Furukawa, S. Kitagawa and P. Falcaro, Acc. Chem. Res., 47, 396–405, 2014
[4] G. Li, H. Kobayashi, J. M. Taylor, R. Ikeda, Y. Kubota, K. Kato, M. Takata, T. Yamamoto, S. Toh, S. Matsumura and H. Kitagawa, Nat. Mater., 13, 802–806, 2014
[5] F. Lyu, Y. Zhang, R. N. Zare, J. Ge and Z. Liu, Nano Lett., 14, 5761–5765, 2014
[6] K. Liang, R. Ricco, C. M. Doherty, M. J. Styles, S. Bell, N. Kirby, S. Mudie, D. Haylock, A. J. Hill, C. J. Doonan and P. Falcaro, Nat. Commun., 6, 7240, 2015
[7] F.-K. Shieh, S.-C. Wang, C.-I. Yen, C.-C. Wu, S. Dutta, L.-Y. Chou, J. V. Morabito, P. Hu, M.-H. Hsu, K. C.-W. Wu and C.-K. Tsung, J. Am. Chem. Soc., 137, 4276–4279, 2015
[8] R. Riccò, W. Liang, S. Li, J. J. Gassensmith, F. Caruso, C. Doonan and P. Falcaro, ACS Nano, 12, 13–23, 2018
[9] C. Doonan, R. Riccò, K. Liang, D. Bradshaw and P. Falcaro, Acc. Chem. Res., 50, 1423–1432, 2017
[10] N. K. Maddigan, A. Tarzia, D. M. Huang, C. J. Sumby, S. G. Bell, P. Falcaro and C. J. Doonan, Chem. Sci., 9, 4217–4223, 2018
[11] W. Liang, H. Xu, F. Carraro, N. K. Maddigan, Q. Li, S. G. Bell, D. M. Huang, A. Tarzia, M. B. Solomon, H. Amenitsch, L. Vaccari, C. J. Sumby, P. Falcaro and C. J. Doonan, J. Am. Chem. Soc., 141, 2348–2355, 2019
[12] E. Astria, M. Thonhofer, R. Ricco, W. Liang, A. Chemelli, A. Tarzia, K. Alt, C. E. Hagemeyer, J. Rattenberger, H. Schroettner, T. Wrodnigg, H. Amenitsch, D. M. Huang, C. J. Doonan and P. Falcaro, Mater. Horiz., 2019. DOI: 10.1039/C8MH01611A
[13] K. Liang, J. J. Richardson, J. Cui, F. Caruso, C. J. Doonan and P. Falcaro, Adv. Mater., 28, 7910–7914, 2016
[14] J. Huo, J. Aguilera-Sigalat, S. El-Hankari and D. Bradshaw, Chem. Sci., 6, 1938–1943, 2015
[15] G.-Y. Jeong, R. Ricco, K. Liang, J. Ludwig, J.-O. Kim, P. Falcaro and D.-P. Kim, Chem. Mater., 27, 7903–7909, 2015
[16] K. Liang, C. Carbonell, M. J. Styles, R. Ricco, J. Cui, J. J. Richardson, D. Maspoch, F. Caruso and P. Falcaro, Adv. Mater., 27, 7293–7298, 2015